

Возможности программного модуля T-FLEX Анализ при расчете конструкций сложной конфигурации и структуры

Анатолий Давыдов, Владимир Левин, Евгений Севрюгов, Сергей Стрыгин

В статье приведены результаты аналитических и экспериментальных исследований сравнительного анализа прочности и жесткости крышек упаковок для яиц ЗАО «Окская птицефабрика» и ООО «Инская птицефабрика» с использованием программного комплекса T-FLEX отечественного разработчика ЗАО «Топ Системы» (www.topsystems. ru). в частности программного модуля конечно-элементного анализа T-FLEX Анализ. Рассматриваются два варианта расчетных схем крышек упаковок. изготовленных из одного и того же материала — гофрокартона — и различаюшихся положением смотровых окон: двух симметрично расположенных в инской и одного несимметрично расположенного в окской. Обшая ширина двух симметричных окон равна ширине несимметрично расположенного окна. Окна получены прорезанием гофрокартона и отгибом прорезанной части, которая используется в виде ребра жесткости. Полученные результаты расчетной схемы сравниваются с результатами, полученными А.В. Педиковым и др. [1, 2]. Приведены результаты натурных испытаний крышек упаковок и решения для неразрезных балок, к схеме которых можно привести крышки упаковок. Гофрокартон [3] представляет собой трехслойную пластину с волнообразным средним слоем — гофром (рис. 1).

Очевидно, что упругие свойства гофрокартона вдоль и поперек гофра различны, и при его расчете как однородного тела с осредненными упругими свойствами следует использовать модель ортотропного, а не изотропного тела, как это сделано в работах [1, 2].

В среде T-FLEX были разработаны 3D-модели с волнообразным средним слоем, что больше приближает расчетную схему к реальной конструкции. В этом случае материал следует считать изотропным, поскольку на конечные элементы разбивается каждый слой, а материал слоев является изотропным (см. рис. 1).

Кроме того, в расчетной схеме надо учитывать, что при изломе гофрокартона он утрачивает изгибную жесткость в месте излома. Этого удалось добиться при моделировании в T-FLEX, но не было учтено в работах [1, 2].

Результаты расчета с применением программного комплекса T-FLEX

Были проведены расчеты, в которых давление изменялось от 4 до 6 кПа (с шагом 0,5 кПа), при этом величина модуля упругости принималась равной значению 400 МПа, согласно программе испытаний [1, 2], и расчеты при постоянном распределенном давлении 5 кПа, при этом величина модуля упругости изменялась от 300 до 500 МПа с шагом 50 МПа, также согласно программе испытаний [1, 2].

Исследуемым крышкам присвоены обозначения: № 1 — для крышки упаковки ООО «Инская птицефабрика» [4]; № 2 — для крышки упаковки ЗАО «Окская птицефабрика» [5].

Из распределения эквивалентных напряжений видно, что максимальные эквивалентные напряжения имеют место в области концентраторов напряжений — в углах вырезов

Анатолий Давыдов

Зам. директора по научной работе, к.т.н., доцент, Рязанский институт (филиал) ФГБОУ ВПО «МГОУ им. В.С. Черномырдина».

Владимир Левин

К.ф-м.н., доцент кафедры теоретической и прикладной механики, Рязанский институ (филиал) ФГБОУ ВПО «МГОУ им. В.С. Черномырдина».

Евгений Севрюгов

Старший преподаватель кафедры теоретической и прикладной механики, Рязанский институт (филиал) ФГБОУ ВПО «МГОУ им. В.С. Черномырдина».

Сергей Стрыгин

Заведующий лабораторией кафедры теоретической и прикладной механики, Рязанский институт (филиал) ФГБОУ ВПО «МГОУ им. В.С. Черномырдина».

из основной поверхности крышки. При этом в трехслойных конструкциях крышек максимальные эквивалентные напряжения имеют место в крышке № 1.

Рис. 1. Однослойная (а) и трехслойная (б) модели крышки упаковки для яиц Окской птицефабрики

олыт использования технологий

Рис. 2. Распределение максимальных значений модуля перемещения в крышках под действием распределенных сил давления *p* = 5 кПа при разных модулях упругости

Распределение перемещений крышек № 1 и 2 свидетельствует о том. что в равных условиях нагружения и при одинаковом трехслойном материале конструкция крышки № 1 испытывает большие деформации (максимальные перемещения — 3,24 мм), чем конструкция крышки № 2 (максимальные перемещения — 2,37 мм). При этом в крышке № 1 по сравнению с крышкой № 2 между окнами для просмотра яиц и крайними опорами крышки возникают значительные перемещения верхней поверхности крышки, что может привести к разрушению яиц.

Из результатов моделирования следует, что в трехслойных конструкциях крышек максимальные перемещения возникают в крышке № 1 они больше соответствующих перемещений крышки № 2 в 1,359 раза.

Для того чтобы выяснить поведение крышек под действием различных нагрузок, был проведен ряд численных экспериментов по программе испытаний [1, 2]. Результаты экспериментов сведены в табл. 1 и 2; зависимости перемещений, определенных в результате компьютерного моделирования, показаны в виде графиков на рис. 2.

Экспериментальное определение вертикальных перемешений крышек

Для проведения эксперимента была разработана конструкция экспериментальной установки (рис. 3).

На бугорчатую прокладку для яиц устанавливается крышка, на которую, в свою очередь, кладется бугорчатая прокладка. На верхнюю бугорчатую прокладку устанавливается ограничительная конструкция, копирующая профиль бугристой поверхности прокладки, которая обеспечивает возможность нагружения крышки песком через верхнюю прокладку и равномерное распределение песка по поверхности бугорчатой прокладки.

Рис. 3. Фото экспериментальной установки

16 - 18 октября Москва

ашаем 60

Frey Alana

- Опыт ведения проекта комплексной автоматизации подготовки производства на различных предприятиях.
- Решение практических задач по автоматизации ключевых процессов разработка КТД, проведение изменений).
- Организация эффективного электронного документооборота компании.
 - Влияние человеческого фактора на успешность внедрения систем автоматизации.

Проектные риски - прогнозирование, локализация и преодоление.

Подробнее на сайте www.topsystems.ru +7 (499) 973-20-34 +7 (499) 973-20-35

ŧ

Таблица 1. Результаты компьютерного моделирования: максимальные значения прогибов и напряжений в крышках под действием сжимающих нагрузок разной величины *E* = 400 МПа

	Молень № 1								
∐a	Листовая конструкция с жесткими сгибами —			Листовая конструкция со сломанными сгибами —			Трехслойная конструкция со сломанными		
, x	изотропный материал (по данным моделирования			изотропный материал (по данным молелирования			сгибами — изотропный материал (по ланным		
16 /	с использованием ANSYS)			с использованием Т-FI FX Анализ)			молепирования с использованием T-FI FX Анализ)		
авлени	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные
	перемешения	напряжения	напряжения	перемешения	напряжения	напряжения	перемешения	напряжения	напряжения
đ	<i>Y</i> , мм	σ, МПа	σ, МПа	<i>Y</i> , мм	σ,, МПа	σ, МПа	<i>Y</i> , мм	σ,, МПа	σ_, МПа
4 00	3 41	-2.32	8.24	0.22	0.00	0.20	1 92	0.00	17 44
4.50	3.90	-2.63	9.38	0.25	0.00	0.23	2.16	0.00	19.62
5,00	4,41	-2,96	10,54	0,28	0,00	0,25	2,40	0,00	21,80
5,50	4,94	-3,28	11,71	0,30	0,00	0,28	2,64	0,00	23,98
6,00	5,54	-3,89	12,92	0,33	0,00	0,30	2,88	0,00	26,16
	Модель № 2								
∏a	Листовая конструкция с жесткими сгибами —			Листовая конструкция со сломанными сгибами —		Трехслойная конструкция со сломанными			
à X	изотропный материал (по данным моделирования			изотропный материал (по данным моделирования			сгибами — изотропный материал (по данным		
46	СИС	с использованием ANSYS) с использованием T-FLEX Анализ)			Анализ)	моделирования с использованием T-FLEX Анализ)			
IHƏ	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные
abл	перемещения	напряжения	напряжения	перемещения	напряжения	напряжения	перемещения	напряжения	напряжения
	<i>Y_{тах},</i> мм	σ _{<i>min</i>} , МПа	<i>σ_{max},</i> МПа	<i>Y_{тах},</i> мм	<i>σ_{тіп}</i> , МПа	<i>σ_{max},</i> МПа	<i>Y_{тах},</i> мм	σ _{<i>min</i>} , МПа	σ _{<i>max</i>} , МПа
4,00	3,78	-4,23	8,88	0,24	0,00	0,43	1,42	0,00	2,68
4,50	4,39	-4,78	9,92	0,28	0,00	0,48	1,59	0,00	3,02
5,00	4,87	-5,33	11,32	0,31	0,00	0,54	1,77	0,00	3,35
5,50	5,44	-5,87	12,78	0,34	0,00	0,59	1,95	0,00	3,69
6 00	6.03	-6 42	14.29	0.37	0.00	0.64	2.13	0.00	4.02

Таблица 2. Результаты компьютерного моделирования: максимальные значения прогибов и напряжений в крышках под действием сжимающих нагрузок при *p* = 5 кПа и различных свойствах материала крышек

-	Модель № 1						•			
CTU	Листовая конструкция с жесткими сгибами —			Листовая конструкция со сломанными сгибами —			Трехслойная конструкция со сломанными			
a	с изотропный материал (по данным моделирования			изотропный материал (по данным моделирования		сгибами — изотропный материал (по данным				
	с использованием ANSYS)			с использованием T-FLEX Анализ)			моделирования с использованием T-FLEX Анализ)			
Ъ,	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные	
NAC 1	перемещения	напряжения	напряжения	перемещения	напряжения	напряжения	перемещения	напряжения	напряжения	
Ŭ	<i>Y_{тах},</i> мм	<i>σ_{min}</i> , МПа	σ _{<i>max</i>} , МПа	<i>Y_{тах},</i> мм	σ _{<i>min</i>} , МПа	σ _{<i>max</i>} , МПа	Y _{<i>max</i>} , мм	<i>σ_{тіп}</i> , МПа	σ _{<i>max</i>} , МПа	
300,00	5,59	-3,28	10,68	0,37	0,00	0,25	3,24	0,00	0,18	
350,00	4,89	-3,08	10,61	0,31	0,00	0,25	2,78	0,00	0,18	
400,00	4,41	-2,96	10,54	0,28	0,00	0,25	2,43	0,00	0,18	
450,00	4,05	-2,96	10,48	0,24	0,00	0,25	2,16	0,00	0,18	
500,00	3,77	-2,96	10,44	0,22	0,00	0,25	1,94	0,00	0,18	
5	Модель № 2									
DCT	Листовая конструкция с жесткими сгибами —			Листовая конструкция со сломанными сгибами —		Трехслойная конструкция со сломанными				
a J	изотропный мат	ериал (по данным	ı (по данным моделирования 🛛 изотропный материал (по данным мод			моделирования	ия сгибами — изотропный материал (по данным			
L L L	с использованием ANSYS)			с использованием T-FLEX Анализ)		моделирования с использованием T-FLEX Анализ)				
Ъ,	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные	Максимальные	Минимальные	Максимальные	
NAC 1	перемещения	напряжения	напряжения	перемещения	напряжения	напряжения	перемещения	напряжения	напряжения	
ž	<i>Y_{тах}</i> , мм	<i>σ_{тіп}</i> , МПа	σ _{<i>max</i>} , МПа	<i>Y_{тах},</i> мм	σ _{<i>тіп</i>} , МПа	σ _{<i>тах</i>} , МПа	<i>Ү_{тах}</i> , мм	<i>σ_{тіп}</i> , МПа	σ _{<i>тах</i>} , МПа	
300,00	6,23	-5,25	11,98	0,41	0,00	0,54	2,37	0,00	3,15	
350,00	5,44	-5,29	11,59	0,35	0,00	0,54	2,02	0,00	3,36	
400,00	4,87	-5,33	11,32	0,31	0,00	0,54	1,78	0,00	3,14	
450,00	4,45	-5,36	11,13	0,27	0,00	0,54	1,59	0,00	3,14	
500,00	4,09	-5,40	11,0	0,24	0,00	0,54	1,43	0,00	3,14	

Внутренняя поверхность ограничительной конструкции обклеена целлофаном, уменьшающим трение песка о боковую поверхность ограничительной конструкции.

На штативах укрепляются индикаторы часового типа с удлиненными штырями, которые опираются на впадины бугорчатой прокладки и обеспечивают фиксацию прогибов крышки. Штативы и конструкция для испытаний расположены на одном недеформируемом основании.

В ограничительную конструкцию засыпается песок, равномерно распределенный по верхней бугорчатой прокладке. Под силой тяжести песка происходит деформация крышки вместе с бугорчатой прокладкой. Индикаторы фиксируют величину прогибов.

Перед выполнением измерений для устранения зазоров между крыш-

Таблица 3. Результаты измерений прогибов в крышке упаковки для яиц Инской птицефабрики

	Нагрузка						
№ ТОЧКИ	30 H	60 H	90 H	130 H			
1	0,99	1,58	2,33	3,48			
2	0,95	1,65	2,45	2,84			
3	0,82	1,48	2,12	2,81			
4	1,18	2,04	2,83	4,05			
5	0.83	1.51	2.08	2.74			

кой и верхней бугорчатой прокладкой выполняется предварительное нагружение песком.

Последующие нагружения выполнялись следующими ступенями нагрузки — порциями песка (H): 30, 60, 90, 130, 170, что соответствует 466, 932, 1398, 2019 и 2640 Па.

В табл. 3 и 4 приведены результаты измерений прогибов в крышке упаковки для яиц обеих птицефабрик. Таким образом, экспериментальные исследования показали, что максимальный прогиб у крышки Инской птицефабрики составил 4,05 мм, в то время как у крышки Окской птицефабрики — 3,09 мм.

При нагрузке 170 Н в крышке упаковки для яиц Инской птицефабрики образовались трещины в четырех углах окон, примыкающих к опорам, а в крышке упаковки для яиц Окской

Таблица 4. Результаты измерений прогибов в крышке упаковки для яиц Окской птицефабрики

No zouvu	Нагрузка						
№ ТОЧКИ	30 H	60 H	90 H	130 H			
1	0,65	1,35	1,86	2,5			
2	0,45	0,95	1,28	1,66			
3	0,89	1,62	2,28	3,09			
4	0,19	0,38	0,65	0,77			
5	0,86	1,43	2,00	2,79			

олыт использования технологий

Рис. 4. Разрывы в крышке упаковки для яиц Инской птицефабрики

птицефабрики при такой же нагрузке не было выявлено никаких признаков разрушения. Трещины в крышке упаковки для яиц Инской птицефабрики хорошо видны на рис. 4.

Представление работы крышек посредством аналогии с неразрезной балкой

переменного сечения

Для получения дополнительной информации о прочности крышек имеет смысл проанализировать работу крышек, представленных неразрезными балками переменного сечения. Расчетные схемы крышек в виде неразрезных балок приведены на рис. 5. Соотношение моментов инерции сечений на участках, где нет окон, к моментам инерции сечений участков с окнами равно 3,49. Это соотношение отражено толщиной линий балок на рис. 5. К балкам приложена нагрузка от давления подложки, приведенная к оси симметрии крышек. Балка, соответствующая крышке № 1, как и сама крышка, имеет ось симметрии.

В результате расчета балок методом сил были построены эпюры изгибающих моментов и поперечных сил (см. рис. 5).

Из эпюр изгибающих моментов и из соотношения моментов инерции следует, что изгибающий момент 15,70 в балке крышки № 2 менее опасен, чем момент 8,61 в крышке № 1. В аналогичном сечении балки крышки № 2 момент равен 8,29. Таким образом, по нормальным напряжениям балка, соответствующая крышке № 2, прочнее балки, соответствующей крышке № 1.

Из эпюры поперечных сил следует, что в ослабленном сечении поперечная сила в балке, соответствующей крышке № 1, равна 4,26, а в балке, соответствующей крышке № 2, — 2,62. Следовательно, и по касательным напряжениям балка, соответствующая крышке № 1, является менее прочной. Этот факт согласуется с экспериментом: именно в этом сечении произошел разрыв в крышке № 1 (см. рис. 4).

Полученные результаты свидетельствуют, что наличие симметрии не гарантирует повышения прочности.

Выводы

- Расчетная схема, использованная в исследованиях [1, 2], не соответствует работе реальной конструкции крышки.
- Экспериментальные исследования показали, что при одинаковых нагрузках максимальные прогибы у крышки упаковки для яиц Инской птицефабрики больше, чем у крышки упаковки для яиц Окской птицефабрики.
- 3. При нагрузке 170 Н в крышке упаковки для яиц Инской птицефабрики образовались трещины в четырех углах окон, примыкающих к опорам, в то время как в крышке упаковки для яиц Окской птицефабрики при такой же нагрузке не было выявлено никаких признаков разрушения.
- 4. Численное решение с помощью программного комплекса T-FLEX выявило, что возле углов окон в крышке упаковки для яиц Инской птицефабрики возникают более высокие значения напряжений, чем в тех же местах крышки упаковки для яиц Окской птицефабрики, что согласуется с фактом разрыва крышки упаковки для яиц Инской птицефабрики в отмеченных местах при экспериментальных исследованиях.
- 5. Экспериментальные и аналитические исследования, а также

Рис. 5. Представление работы исследуемых крышек посредством аналогии с неразрезной балкой переменного сечения

- компьютерное моделирование с применением программного комплекса T-FLEX на основе разработанных трехслойных моделей крышек, учитывающих конструктивную ортотропность крышек и условия соединения элементов в местах сгибов крышек, показали, что более прочной является конструкция крышки упаковки для яиц ЗАО «Окская птицефабрика».
- 6. Наличие симметрии в расположении окон в упаковке для яиц Инской птицефабрики не делает ее более прочной. Здесь существенную роль играет распределение материала крышки по ее длине. Расчеты показывают, что материал распределен более рационально в крышке упаковки для яиц Окской птицефабрики.

Библиографический список

 Сравнительный анализ прочности конструкций упаковок яиц с использованием стандартной бугорчатой тары: Заключение кафедры теоретической и прикладной механики ГОУ ВПО «Томский политехнический университет»/ Рук. В.М. Замятин, Научн. рук. А.В. Педиков; Отв. исполн. К.В. Щедривый. Томск, 2010. 36 с.

- 2. Педиков А.В., Шедривый К.В., Манабаев К.К. Применение программного комплекса ANSYS v12 для расчетного сравнения конструктивных особенностей крышек яичных лотков в условиях больших перемещений: Электр. ст. // Форум Томского политехнического университета. 2010. Режим доступа: http://portal.tpu.ru/forums/ file/35/применение программного комплекса ANSYS v12 для расчетного сравнения конструктивных особенностей крышек яичных лотков в условиях больших перемещений. *pdf, свободный.
- Картон гофрированный. Общие технические условия: ГОСТ 7376-89. Введ. 1991-01-01. М., 1991. 17 с.
- Упаковка для яиц: пат. на полезн. модель 90054 Российская Федерация, МПК В 65 D 85/32 / Е.В. Праскурина. — № 2009132595/22; Заявлено 28.08.2009; Опубл. 27.12.2009, Бюл. № 36.2 с.
- Упаковка для яиц: пат. на полезн. модель 71640 Российская Федерация, МПК В 65 D 85/32 / И.Н. Гришков, О.В. Лякин, А.С. Морозов, Д.А. Плотников. — № 2007144818/22; Заявлено 05.12.2007; Опубл. 20.03.2008, Бюл. № 8. 2 с.

5